Prof. Dr. Frederik Vonhoff
Physics Department, TUM School of Natural Sciences,
TU München, Garching
sprechen zum Thema
How nuclear anharmonicity and dynamic disorder shape the electronic transport in halide perovskites
Understanding charge carrier transport is crucial for optimizing the performance of halide perovskites as solar energy converting materials. However, modeling the electronic transport in these materials is challenging due to their anharmonic nuclear dynamics and dynamic disorder [1], which gives rise to an intermediate transport regime. By using time-dependent tight-binding Hamiltonians based on molecular dynamics simulations to capture the nuclear anharmonicity, we address the dynamic disorder as the primary scattering mechanism [2, 3]. In our dynamic disorder model, we accurately describe the charge carrier mobilities for the two prototypical halide perovskites, MAPbBr3 and MAPbI3. By analyzing the microscopic transport mechanisms, we identified three distinct transport channels, collectively driving the charge carrier transport [4]. Building on this framework, we extend the molecular dynamics-based Hamiltonian approach to enable further predictive modeling of transport and optoelectronic properties.
[1] M. J. Schilcher, P. J. Robinson, D. J. Abramovitch, L. Z. Tan, A. M. Rappe, D. R. Reichman, D. A. Egger, ACS Energy Lett. 6, 2162 (2021)
[2] M. Z. Mayers, L. Z. Tan, D. A. Egger, A. M. Rappe, D. R. Reichman, Nano Lett. 18, 8041 (2018)
[3] M. J. Schilcher, D. J. Abramovitch, M. Z. Mayers, L. Z. Tan, D. R. Reichman, D. A. Egger, Phys. Rev. Mater. 7, L081601 (2023)
[4] F. Vonhoff, M. J. Schilcher, D. R. Reichman, D. A. Egger, Physical Review Materials 9, 094601 (2025)
Interessenten sind herzlich eingeladen
Professor Dr. Kühn








